Page tree
Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 4 Next »

Matthias Murray graduated this year achieving a Masters in Data Science from New College of Florida.  

He previously studied a BA in Maths and Physics also at New College of Florida, producing a thesis on Thin Film Fracture and Finite Element Analysis Fundamentals. 

Poster Abstract

The length and technical detail of SEC filings makes them largely inaccessible for most investors to read or analyze, and with the growing volume of data, these filings are getting longer and more numerous. It is therefore increasingly of interest to seek automation of part of this task using natural language processing (NLP).

Matthias's poster compares and contrasts approaches to sentiment analysis to address this problem and evaluate the efficacy of NLP for such a task.

Presentation

In this Video Recording, Matthias provides a tour and explanation of his poster content.

Poster Title: Applying HPCC Systems TextVector to SEC Filings

Click on the poster for a larger image. The original PDF version can be found here. (Available for download).

  • No labels